Connected Dominating Sets
نویسندگان
چکیده
PROBLEM DEFINITION Consider a graph G = (V,E). A subset C of V is called a dominating set if every vertex is either in C or adjacent to a vertex in C. If, furthermore, the subgraph induced by C is connected, then C is called a connected dominating set. A connected dominating set with a minimum cardinality is called a minimum connected dominating set (MCDS). Computing a MCDS is an NP-hard problem and there is no polynomial-time approximation with performance ratio ρH(∆) for ρ < 1 unless NP ⊆ DTIME(n ln ) where H is the harmonic function and ∆ is the maximum degree of the input graph [10]. A unit disk is a disk with radius one. A unit disk graph (UDG) is associated with a set of unit disks in the Euclidean plane. Each node is at the center of a unit disk. An edge exists between two nodes u and v if and only if |uv| ≤ 1 where |uv| is the Euclidean distance between u and v. This means that two nodes u and v are connected with an edge if and only if u’s disk covers v and v’s disk covers u. Computing an MCDS in a unit disk graph is still NP-hard. How hard is it to construct a good approximation for MCDS in unit disk graphs? Cheng et al. [5] answered this question by presenting a polynomial-time approximation scheme.
منابع مشابه
On the edge geodetic and edge geodetic domination numbers of a graph
In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...
متن کاملBelow all subsets for Minimal Connected Dominating Set
A vertex subset S in a graph G is a dominating set if every vertex not contained in S has a neighbor in S. A dominating set S is a connected dominating set if the subgraph G[S] induced by S is connected. A connected dominating set S is a minimal connected dominating set if no proper subset of S is also a connected dominating set. We prove that there exists a constant ǫ > 10 such that every grap...
متن کاملConnected domination of regular graphs
A dominating set D of a graph G is a subset of V (G) such that for every vertex v ∈ V (G), either v ∈ D or there exists a vertex u ∈ D that is adjacent to v in G. Dominating sets of small cardinality are of interest. A connected dominating set C of a graph G is a dominating set of G such that the subgraph induced by the vertices of C in G is connected. A weakly-connected dominating set W of a g...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملOn graphs with equal total domination and connected domination numbers
A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. The total domination number γt (G) of G is the minimum cardinality taken over all total dominating sets of G. A dominating set is called a connected dominating set if the induced subgraph 〈S〉 is connected. The connected domination number γc(G) of G is the minimum cardinality taken over all min...
متن کاملConnected odd dominating sets in graphs
An odd dominating set of a simple, undirected graph G = (V,E) is a set of vertices D ⊆ V such that |N [v]∩D| ≡ 1 mod 2 for all vertices v ∈ V . It is known that every graph has an odd dominating set. In this paper we consider the concept of connected odd dominating sets. We prove that the problem of deciding if a graph has a connected odd dominating set is NP-complete. We also determine the exi...
متن کامل